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Torbjorn Wigren, Senior Member, IEEE

Abstract—Automatic control using ultra-reliable and low la-
tency communication is one of the potential applications of the
new fifth generation wireless systems. A remaining challenge is
then to guarantee a low end-to-end delay with low jitter over com-
bined internet and wireless interfaces that are packet switched
and capacity optimized. The main novelty of the present paper
is to introduce stringent delay control to meet this challenge,
over simultaneous multiple data paths. The proposed multiple-
input-multiple-output cascade control system is nonlinear since
the dwell times of the transmission node queues used as actuators
cannot be negative. Stability analysis based on integral quadratic
constraint theory is therefore applied to characterize the global
stability of the controller. The practical performance is evaluated
with experiments using product like test bed C++ code. It is
stressed that the proposed controller does not require inter-node
time synchronization.

Index Terms—S5G mobile communication, URLLC, Delay,
MIMO control, Networked Control, Nonlinear Systems, Stability.

I. INTRODUCTION

IFTH generation (5G) wireless systems aim to provide
infrastructure for a number of new use cases, among
these high performing wireless networked control [11], [28],
[31], [32]. It is important to note that such ultra-reliable and
low latency communication (URLLC) [2] functionality encom-
passes signals around the entire feedback control loop, not
just conventional remote reference signal control over radio.
Consequently, as noted in [34], the delay characteristics of the
packet switched 5G end-to-end networks warrant renewed at-
tention from the automatic control community. The novelty of
the present work is believed to be the systematic application of
feedback delay control to these 5G packet switched networks,
simultaneously controlling the round trip delays over multiple
data paths. The networked control applications operating over
the 5G networks can then work under similar assumptions as
when wired feedback control is applied, i.e. loop delays as
low as the network allows with a minimal amount of jitter.
There are many commercial motivations for networked
URLLC control, among these the possibility to reduce the
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need for cabling in manufacturing plants [19]. Apart from the
associated cost reduction, removal of cabling is particularly
beneficial in case of rotating machinery where slip-ring and
rotary transformer based interfaces may otherwise be needed,
see e.g. [4]-[7]. Other applications focus on situations where
wireless connectivity provides unique possibilities, e.g. for re-
mote surgery exploiting haptic feedback over a tactile internet
[24], [29], [33].

The currently available techniques for delay control over
the 5G wireless and wired internet include the transmission
control protocol (TCP) and its augmentation with various
kinds of active queue management (AQM) algorithms, see
e.g. [36]. TCP aims for capacity optimization, while AQM
is based on packet discards to mitigate problems with queue
data volume overflow with less delay than TCP. A particu-
lar AQM algorithm for reduction of delay is random early
detection (RED). RED starts to drop data packets randomly
before the buffer threshold is exceeded. However, the analysis
of [5] indicates that the jitter is increased instead, leaving
the URLLC problem unsolved. Wireless factory automation
and tactile internet feedback control applications over the
new 5G networks thus require significantly lower round trip
latencies and jitter levels than can be obtained with TCP and
AQM, see [2], [19], [29], [46] and section II.B for a more
detailed discussion. In addition, new impairments in typical
5G wireless URLLC architectures arise due to the combination
of the non-guaranteed latency of packet switched networks,
radio fading [13], and the need to use multi-point transmission
to overcome radio shadowing in factory environments and at
high carrier frequencies [11], [32], [44]. The problem with
delay and jitter over the internet is a well studied subject,
and there are techniques that go beyond TCP and AQM that
could address some of the above impairments. One solution
is to apply time-stamping of packets as a way to measure
the delay, thereby allowing for delay control and for an
increased robustness against jitter. An early approach can be
found in [22]. That paper presents an observer based delay
compensating networked controller. To handle varying delay,
time synchronization between the controller node and the
plant node is assumed. Such synchronization is a general pre-
requisite for the use of time-stamping of data to obtain delay
robustness in networked control. A more recent approach to
delay compensation can be found in [16]. There buffering
is used to mitigate the effect of jitter in networked control
applications. Work on multi-path architectures include e.g.
[37]. That work discusses a statistical algorithm that trades off
delay and time skew for one way downlink data like voice and



video. The URLLC feedback control applications are however
concerned with round-trip delay, time skew and jitter, which
is the case treated in the present paper.

One particular enhancement with respect to [37] is that the
cascade controller of this paper enforces non-empty wireless
transmission queues by constraining the inner loop queue
dwell time reference values to be non-negative. This is im-
portant for URLLC feedback control applications since an
empty transmission queue could stop the flow of control
signals from the controller to the plant, thereby potentially
corrupting e.g. a stabilizing control loop. This is not unusual
in practice, where disturbances like radio fading can result in
frequent very low queue dwell time reference values. This is
very clearly illustrated by the numerical evaluation of section
V, and by results reported e.g. in [40], [41], [42] and [45].
The non-negative constraint is particularly important when the
time skew controller is adjusted to minimize the delay at the
application layer, thereby operating with small transmission
queue data volumes. The design of a linear controller that
does not create negative queue dwell time reference values
would require a back-off, resulting in operation with signifi-
cantly larger wireless transmission queue data volumes. This
is undesirable since it would increase the round trip delay
experienced by the application.

The first contribution of the paper is therefore a new
multiple-input-multiple-output (MIMO) networked round trip
time (RTT) skew control algorithm. The round trip time skew
controller exploits transmit data queues in the transmission
nodes, in order to vary the dwell time of the application control
signals in these queues. The controller exploits static decou-
pling, linear lead-lag design, and cascade control, to achieve
a low computational complexity. An additional advantage is
that the controller solves the data flow split problem at the
controlling node, since the inner loop control signals are the
downlink data rates that fully define the data flow split. In
addition, no time synchronization between the involved nodes
is required.

The round trip time skew controller is made non-linear by
saturations that restrict the reference round trip time values of
the inner loop controllers to be non-negative. A drawback with
this is that the stability of the time skew controller becomes
more complicated to assess. Fortunately, a stability analysis
can still be carried out and the second contribution of the
paper provides a MIMO stability analysis based on the theory
of integral quadratic constraints (IQCs) [17], [23]. Conditions
under which the closed loop time skew control system is
globally stable are derived, and evaluated numerically. The
evaluation indicates that the stability bounds are similar to
those of [45] obtained with the classical Popov-criterion [39],
and therefore IQC does not seem to produce overly conserva-
tive results. The numerical stability evaluation is performed for
the controller tuning used in the experiments with the test bed
C++ code. These experiments constitute the third contribution
of the paper.

The problem at hand is a networked control problem,
however the focus is on delay rather than on the quantization
related problems of e.g. [3], [8], [14], [26]. In addition to the
work of [5], [16], [22], [37] that was discussed above, work on

delay with relevance for control over the wireless internet in-
clude e.g. [35], [40]-[43]. The reference [43] provides a stabil-
ity analysis of the inner loop controllers that are controlled by
the outer loop of the MIMO cascade controller of the present
paper. The references [40]-[42] present alternative inner-loop
control schemes. The paper [45] discusses a downlink time
skew controller for dual connectivity in the 4G cellular long-
term evolution (LTE) system. A linear analysis of disturbance
rejection properties, related to the control system of [45],
appears in [20], with a corresponding IQC stability analysis
including nonlinearities presented in [10]. The works of [10],
[20], [45] differ from the present paper in that other non-
linear effects affect the control systems and that the inner loop
controller of [40] is used. In addition, the stability analysis of
[45] is based on the Nyquist- and Popov-criteria, [39], applied
to a two path dual connectivity problem, rather than on the
more general IQC theory of [17], [23] that is applied here.
The time skew controller of [21] with a static reference value
adjustment instead of a dynamic outer skew control loop could
be modified to handle also the present control problem. In
[25] the motivation for time skew control from a networked
controller design perspective is discussed, based on a two path
dual connectivity system architecture using URLLC. It also
needs to be noted that the proposed controller is motivated by
simplicity and computational complexity considerations. More
advanced nonlinear controllers, e.g. based on model-predictive
control [15], may therefore improve performance.

The notation uses boldface characters to indicate vectors
and matrices. Whenever possible, dynamics is handled in the
Laplace transform domain, using quantities that are functions
of the Laplace variable . When handling nonlinear transfor-
mations a switch to the time domain is required which is
stated directly in the paper. In addition, time domain signals
are marked with an inverted caret as where indicates
dependence of time.

The paper is organized as follows. Section II introduces
the URLLC architecture. The proposed round trip time skew
controller is discussed in Section III, followed by the stability
analysis in Section IV. The control system is evaluated numer-
ically in Section V. Conclusions end the discussion in Section
VI

II. 5G WIRELESS URLLC WITH MULTI-NODE
CONNECTIVITY

A. Networked URLLC Architecture

As discussed in the introduction, wireless 5G networks will
be used for a variety of feedback control applications, often
requiring an architecture that supports centralized closed loop
controllers operating on cloud servers. The introduction of
the model architecture of Fig. 1, where a controller node
is connected to several plant nodes over multiple wireless
interfaces served by multiple transmission nodes supports this
requirement. The controller node is thus able to control one or
more plants, connected to interface units denoted user equip-
ments (UEs) in Fig. 1. The controller node is connected to
the transmission nodes over network interfaces, implemented
with e.g. optical fiber, copper wire or wireless backhaul [30].
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Fig. 1. The architecture of the URLLC round trip time skew control system. The remaining parts indicate the underlying round trip time skew control layer.
A single plant node is shown in the figure, however the URLLC round trip time control architecture is designed to support several such nodes.

The transmission nodes each serve a wireless 5G interface
connecting to the plant node interface which is essentially the
radio interface of a 5G UE.

The URLLC application layer is marked with dashed boxes
and lines, and it is at this layer where plant controller com-
mands are sent from the plant controller to the plants and
where feedback signals are sent back from the plants to the
plant controller. The transmission of controller commands and
feedback information is performed unaware of the lower data
bearer layer details. Application controllers can therefore be
developed and deployed independently of the round trip time
skew controller functionality that is the subject here.

As stressed in the introduction the 5G wireless networks
are built on packet switched technology, meaning that delay
properties are much less guaranteed than in wired circuit
switched data connections. The function of the round trip
time skew controller discussed in the paper is therefore to
ensure that the lower layer data bearers offer services with
as low delay and jitter as possible to the application layer
feedback control system. This means that the round trip time
skew controller needs to measure the round trip delay over
each transmission node and regulate the time differences to
minimize the deviation from the time skew reference values.
At the same time the round trip delay needs to remain
close to the loop delay reference selected for the particular
feedback control application. Disturbances working against
this include varying network interface delays e.g. due to data
traffic related load variations, and varying wireless data rates
due to shadowing and fading over the 5G radio connections
[13], [32], [36], [44]. In addition, the loop delay itself makes
the control of the round trip time skew difficult.

The round trip time skew controller proposed in the paper
uses the wireless transmit data queues of Fig. 1 as actuators to
balance the round trip time of each data path of the connection
between the controller node and the plant node. The round trip
time skew control signals are the data rates by which data is
sent over each network interface to the corresponding transmit
data queue. In this way the dwell time of the data in each
transmit data queue is varied in the way needed to balance

the round trip time of each path. Note that the proposed
controller applies cascade control, with one inner round trip
time controller handling each path.

B. URLLC Requirements and Data Flow Control

There are multiple requirements on the URLLC architecture
of Fig. 1. Among these are a low enough error probability
and a sufficient capacity over the air interface, both of which
are related to dimensioning. These aspects are not discussed
further in this paper.

To motivate why control of delay and time skew as proposed
in the present paper is of central importance for 5G URLLC,
it is noted that a backbone of factory automation is currently
provided by industry standard fieldbuses that exploit wired
Ethernet connectivity [19]. The provided delay characteristics
are of very high quality. The synchronization and delay
characteristics of the isochronous data exchange modes of
the corresponding networks define control- and feedback-
signal exchange cycles as fast as a few hundred , with a

jitter level, c.f. the PROFINET IO [46]. The motion
controllers of industrial robots typically exploit such fieldbus
services. Impairments that prevent the 5G URLLC systems
from meeting at least parts of the state of the art wired
performance must therefore be addressed for 5G URLLC to
stay competitive. The impairments affecting the architecture
of Fig. 1 include internet delay and jitter over the network
interfaces. The transmit data queues needed to compensate
for the fading and thereby rapidly varying radio channel
capacity [13] contribute with packet queue dwell time induced
delay and jitter. These impairments typically dominate over
the wireless interface delays themselves [2]. In addition to
this, multi-point transmission as shown in Fig. 1 is needed in
factory environments to cover up for the very significant radio
shadowing at 5G frequency bands [31], [32], [44]. The delay
variations between different transmission paths then contribute
further to the jitter level. To meet the latency of discussed
for URLLC [2], over the architecture of Fig. 1, it is therefore
concluded that time skew control is a highly relevant problem.



A further reason why jitter control is important in this context
is that jitter at the data bearer layer translates to irregular
sampling at the application control layer. This means, for
example, that the exact relation between continuous time and
discrete time obtained with zero-order-hold (ZoH) sampling
[12] for linear systems is lost. The consequence is a need to
use more computationally intense time varying control - or
to add performance reducing error margins in the controller
design [25]. It is finally noted that the above requirements
are also relevant for application of 5G URLLC to the tactile
internet. The tactile internet is expected to include a variety of
wireless augmented reality and virtual reality functionality for
factory automation, construction, advanced gaming and remote
medical care [29]. A common requirement is then a round trip
latency well below at the application layer.

The 5G URLLC architecture of Fig. 1 therefore needs delay
skew and delay control to secure at least the following general
requirements:

o The round trip delay, including the effect of jitter, should
be kept below a specified maximum value at the applica-
tion layer.

o The round trip time differences between transmission
paths at the application layer, including jitter, should be
controlled towards specified values.

For very stringent round trip delay requirements the solution
may require that the controller node and the transmission
node be co-located. In many cases the controller node and
the transmission nodes will however be connected with a
network interface as depicted in Fig. 1. In this situation,
stringent time skew control solves a number of practical
problems. First, since the network interfaces would typically
be internet interfaces that also carry other types of packet data
traffic for multiple users [36], the associated network interface
delay may change with the load thereby affecting the above
two objectives. Another problem is that the technology used
for the network interfaces may differ between transmission
nodes, leading to very different nominal associated delays [30],
[36]. In such situations the deployment could become more
complicated by the need to adjust network interface delays
against each other. The paper therefore proposes the use of
automatic round trip time skew control, using the transmit data
queues to control the round trip latency and round trip time
skew according to the above two requirements. The details of
the MIMO round trip time skew controller are described in
the following section.

III. ROUND TRIP TIME SKEW CONTROL
A. MIMO Cascade Control Architecture

A block diagram of the proposed MIMO round trip time
skew controller appears in Fig. 2, which shows the general
case with transmission nodes and data paths. One of
these data paths is selected as the reference data path, marked
with the subscript . As is evident from the block diagram, the
use of MIMO cascade control is proposed. The outer MIMO
round trip time skew controller thus controls reference round
trip time values, which are applied to the inner loops
that control the round trip time of their respective data path,

using a single-input-single-output (SISO) inner loop controller
discussed below. All parts of the MIMO round trip time
skew controller are located in the controller node, while the
SISO inner loops are divided between the controller node and
the transmission nodes depicted in Fig. 1. The transmit data
queues are the entities that are manipulated for control of the
round trip time skews between the data paths.

Remark 1: Note that control of different dynamic properties
of a plant may require different bandwidths, thereby tolerating
different loop delays. One solution in such situations could
be to guarantee different round trip times over different data
paths. In such situations it is not sufficient with a single round
trip time skew reference value, set to zero. Instead, non-zero
time skews would be needed, which is allowed here. Note also
that the reference values need not be constants. One particular
extension would be to apply extremum control [1] for on-line
minimization of the total delay budget. In such a case the
corresponding reference signal would become time varying.

B. Outer Loop

To describe the outer loop the round trip time skew control
errors are first computed as

(D
Here is the round trip time skew reference
and is the measured time skew of the th data

path as compared to the reference path . This time skew is
obtained from feedback information delivered to the controller
node by the inner loops, as described below. Since there are
degrees of freedom, one for each data path, an additional
control loop addressing the sum of the round trip times of the
data paths is needed. The corresponding error is obtained as

2

where is the reference signal for the sum of
round trip times and where is the measured sum
of the round trip times of the data paths. The quantity

can be thought of as a delay budget, available
for distribution between the data paths. Some of this delay
is consumed by the network interface and wireless interface
delays, but the remaining amount of delay is available for
distribution between the transmit data queues, to meet the
round trip time skew control objective. The following example
explains the idea:

Example 1: Assume that the delays of the network interface,
the wireless interface and the UE amounts to for
transmission node 1 and for transmission node 2.
By allowing a total round trip time delay budget of

, by setting , and by setting

, the round trip time skew controller
may solve a feasible control problem by steering towards the
unique transmit data queue delays of for node 1, and

for node 2. It is easily seen that the controller will be
able to adjust the delay distribution using positive transmit data
queue delays as long as the sum of the other interface delays
does not exceed , for any of the two data paths. If that
no longer holds, the control problem becomes infeasible.
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Fig. 2. The round trip time skew control loop, for an arbitrary number of transmission nodes. There is one inner loop controller for each transmission node.

The control errors are further processed by scalar feedback
control filters to produce the control signals tgpew,i($), @ =
1,...,n, and w4y, (s) that provide the input to the decoupling
matrix block M. The control signals are given by

3
“

Here the design of the controller filters Crrr skew,i(s), @ =
1,....,n, and Crrr sum(s) is discussed in detail in section
V. It can be noted that most scalar linear design techniques
are immediately applicable, since the static decoupling matrix
combines the control signals wskew,i(s), ¢ 1,...,n and
Usum ($) by a linear mapping that decouples the data paths
statically under assumptions discussed in the following sub-
section. The outputs from the decoupling matrix M consists
of the following n + 1 signals

uskew,i(s) = CRTT,sk:ew,i(S)GSkew,i(3)7 1= 17 ey N

Usum (3) - CRTT,sum (3)€sum (3) .

n
zi(s) = Zmi,kuskew,k(s) + Mg 1Usum(8), 1=1,..,n,
k=1
6))
n

xr(s) - Z mn+1,kuskew,k(3) + mn+1,n+1usum(3)7 (6)
k=1
where m; ;, denotes a matrix element of M. Since these signals
are intended to provide the reference round trip times to the
inner loop controllers, they are first constrained to be non-
negative and bounded. Note that a switch to the time domain
is needed to define the transformations that are given by

Ty (1) = max(0.0, min(i; (), Tl )
= sat;(&;(t)), i=1,...,n, @)

Ty (£) = max(0.0, min(z,(t), Thel, ) = saty(@,(1)).
®)
Here T,/ .. i = 1,...n and T}/, . are the maximum
reference values applied for the inner loops.

The reference signals of (7) and (8) provide the input to the
n+1 inner loops. As seen from the outer loop these inner loops
are modeled as linear filters G0 (s), ¢ = 1,....n and

e (5), exploiting assumptions discussed in subsection
ITL.D. Here it is sufficient to note that the inner loops provide
the output round trip times

inner

window,i(S)Tlg;fT7i(3)7 1= 1, Ny,

©)
(10)

Trrri(s) =

inner

window,r (S)T]geTfT,r (S) .

The final step of the outer loop is the formation of the round
trip time skew and sum feedback signals, given by

1,..,n, (11)

Trrrr(s) =

Trr7,skew,i(8) = Trrri(s)—TrrTr(8), @

Trr7 sum(s) = Z Trrr,i(s) + Trrr,e(s).  (12)
i=1

C. Static Decoupling

The use of n + 1 scalar linear controller filters builds on
the assumption that the control of the data paths can be
reasonably well decoupled. The approach here is to derive
a static decoupling, applicable when the round trip time skew
control loop is designed with a significantly lower bandwidth
than the inner loops. In order to derive the static decoupling
matrix M the following technical assumption is needed:

Al) The dwell time reference restriction to non-negative
values is statically inactive.

It is stressed Al is introduced only to motivate the static
decoupling, the saturations of (7) and (8) are retained in all



other parts of the paper. In particular, note that the simulations
and the IQC stability analysis consider the combined effect of
static decoupling and saturations without Al, as implied by
the conditions of Theorem 2. The question of how well the
static decoupling works in the dynamic case is addressed by
simulations and by the IQC stability analysis in Section V.

Remark 2: It was noted in example 1 that
needs to be large enough for the round trip time control
problem to be feasible. In static cases Al can then be expected
to hold. In case is selected to be sufficiently
large, the margin to negativity will be large enough for Al
to hold also in the dynamic case, as long as the closed loop
system remains stable. However, selection of a
value which is too large leads to a correspondingly larger loop
delay which may be negative for the application controller
performance. Therefore the tuning of is a com-
promise, which implies that the saturation may well be active
in the dynamic case. This is a main motivation for the IQC
stability analysis of the paper.

To derive , the following matrix relations are introduced,
using Al, (5), (6), (9) and (10)-(12),

13)

(14)

5)

Above and  denote vectors or triangular matrix blocks
with dimensions that are obvious from their location in the

matrices they define. An insertion of (13) in (14), followed by
an insertion of the result in (15) results in

(16)
Next, the static situation is addressed under the assumption
of perfect inner loops, i.e.

A2) , and

The assumption A2 is motivated by the cascade structure of
the round trip time skew control system.

It now follows from Fig. 2, Al, A2 and (16) that the
round trip time and round trip time sum control loops become
statically decoupled whenever

a7)

where is the identity matrix of order . The matrix
can be analytically inverted to give the result:
Theorem 1: Assume that A1 and A2 hold for the round trip
time skew control system of Fig. 2. The control loops

then become statically decoupled if

D. Inner Loop

One instance of the inner round trip time control loop is
depicted in Fig. 3. That control system is discussed in detail
in [43] and the discussion here is limited to arrive at the
assumptions leading to the transfer function model of the inner
loops of Fig. 2. The reader is referred to [43] for further details.
The transmission node indices are dropped in the discussion
of the details of the inner loop.

As can be seen in Fig. 3, the inner loop controller is located
in the controller node. It produces rate control commands that
result in a transmission of data items with this rate, over the
network interface to the transmission node, where the data
ends up in the transmit data queue. The data item is then sent
over the wireless interface to the UE. If it is correctly received
a corresponding acknowledgement message is sent back from
the UE over the wireless interface to the transmission node,
from which it is sent back to the controller node to complete
the inner loop data flow. Here the term ‘data item’ is used to
allow a simultaneous discussion of the practical handling of
data in terms of internet packets [36], and the modeling of the
control loop dynamics where data items are to be interpreted
as bits.

The inner loop control algorithm of Fig. 3 is a window
based algorithm that controls the number of data items that are
in flight as counted from the controller node to the UE, and
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Fig. 3. The round trip time inner control loop, using data in flight feedback.

for the corresponding acknowledgement back, over a specific
transmission node. To define the interface between the inner
and outer loops the time and Laplace domains both need to
be involved. The interface to the outer loop is accomplished
by a multiplication of the dwell time reference value Tp % (t)
by the scheduled wireless rate over the air interface, wq.(t),
to obtain the reference value for the number of data items in
flight as

res () = £ (Thhe(iasn(t = Tun)) - (18)
where £(-) denotes Laplace transformation and where T, n
is the network interface delay from the transmission node to
the controller node. At the output, the inverse transformation

L7 (y(s))

Tarr ) = G T

(19)
transforms the current number of data items in flight, y(s), to
the corresponding time, this being the round trip time.

The transformation (19) can of course also be obtained by
keeping track of the transmission time of each data item sent
in the downlink, the block diagram intends to illustrate the
difference between the time invariant and time varying parts
of the inner loop. It should be noted that the dynamics of
the transmit data queue is not a part of the actual feedback
loop of [43]. The reason is that the state variable defining the
loop gain is rather the data item number. Therefore it is the
delay of the transmit data queue that is a part of the control
loop model. The queue generates this delay, thereby being an
indirect part of the time varying part of the inner loop.

To describe the inner control loop in some detail the control
error is formed as

e(s) = yres(s) — y(s). (20)

The inner loop controller transfer function C(s) then produces
the data rate control signal

u(s)

Since the data rate is non-negative (data items are not sent
back) and limited by the capacity of the network interface
channel [13], a saturation is used to generate the data rate
by which data items are sent over the wireless interface. The
saturation is given by

C(s)e(s). 20

kumax7 ﬂ(t) 2 Umaz
u(t) =(ut) = ¢ kua(t), wmin < @(t) < tmez (22)
Ktimin, at) < umin

where k is the gain, w,,;, is the lower saturation limit
(typically 0.0) and wup,qy is the upper saturation limit. The
signal @(s) is then integrated to provide the count of the data
item number (here typically the number of the bit) that is
currently sent over the network interface. This current data
item (bit) number is denoted (s) and it is obtained as

1
s+0

o(s) = u(s).

The leakage factor 6 > 0 occurs since a so called active
queue management algorithm (AQM) [36] may be overlaid,
to improve end to end transmission control protocol (TCP)
performance over the internet. AQM operates by intentionally
discarding packets when the transmit data queue contents be-
comes too large, thereby introducing additional TCP feedback
non-acknowledgement messages that reduce the round trip
end-to-end latency, between the internet data source and the
end user. The derivation of the leakage model that affects
the controller node, the transmission node and the transmit
data queue dynamics appears in [43] and is not repeated here.
The incoming data item number of the transmit data queue,

(23)



Vgueue (s) i obtained from the data rate signal 4(s), delayed
over the network interface by Ty n, by leaky integration as

1
s+ 0

The transmit data queue delay, Tyucue, is modeled as a
constant here, similarly to the other delays of the inner loop.
This is motivated by the fact that the stability analysis of [43]
requires such assumptions, and since the use of stable inner
loop controllers is a main idea of the overall round trip time
skew controller design. The required assumption is

A3)

e_ST‘”*Nﬂ(s).

(24)

Vqueue (5) -

Tan, Toueuwes Ta,w, Tue, Tww and Ty N are
constant.

Here Tiy,w is the downlink wireless delay, Ty g is the UE
processing delay and T3, w is the uplink wireless delay.

The validity of the assumption A3 for each separate delay
needs further comments. The assumptions on the network
interface delays Ty n and T n are reasonable, at least in
cases without large loads and network interface congestion.
The wireless interfaces Ty w and T, w are designed to be
small and in the sub-ms region in 5G, also in case of re-
transmission [13]. They are therefore typically constant and
never dominating. The same is true for the UE processing
delay, Tyg. The exception is the transmit data queue delay,
Thueue, Which is dependent on the scheduled wireless rate
and the commanded input data rate. In practice the queue
delay will therefore not be constant. However, since i) the
inner loop controller controls Tr7r (t), ii) the other delays of
the inner loop are typically close to constant, iii) the cascade
control makes the variation of T (t) slow as compared to
the inner loop dynamics, it can be argued that the inner loop
controller itself tends to operate to keep Tgyeue constant. This
argumentation shows that the model with constant delays, as
stated by A3, is not an unreasonable one. The reader is referred
to [43] for further details on the modeling of Tgyeue.-

Following the loop back to the controller node now results
in the equation

v(s) = !

— 6e_S(le7N+Tqueue+le,W+TUE+Tul,W+TuLN),a(s)'
S

(25)
where v(s) denotes the data item number (the bit number)
of the latest acknowledged data item correctly received in the
UE. The difference

y(s) = v(s) —v(s) (26)

is the feedback signal, representing the number of data items
in flight. Insertion of (23) and (25) in this expression results
in

1

s+90

y(s) =

(1 _ e_S(le7N+Tqueue+le,W+TUE+Tul,W+Tul,N)) ﬂ(s)
(27
The linear loop gain of Fig. 3, from u(s) to —u(s), then
follows by a multiplication with the transfer function C(s)
of the inner loop controller to give

9(s)

C(s)
s+9

(1 _ e—S(TdLN“l‘Tqueue“l‘le,W+TUE+TuZTW+Tul,N) )
(28)
Together with the static nonlinearity of (22), this defines the
inner closed loop dynamics. The structure of the loop and the
infinite dimensional linear loop gain suggest that input-output
stability theory is applicable to the inner control loop [39].
This stability analysis reveals the following major reason for
the use of the nonlinear inner loop controller of Fig. 3,

Lemma 1 (Theorem 2 of [43]): Consider the control sys-
tem defined by Fig. 3 in the case of proportional con-
trol. Assume that the conditions A1-A5 of [43] hold. Then,
in case 4 — 0, the control system obeys the Popov
inequality, which implies that the control system of Fig.
3 is asymptotically (in &) globally Ls-stable for all de-
lays {Ta,~, Tqueue, Tar,w, Tu g, Tui,w, Tw v} and propor-
tional controller gains C' > 0.

Proof: See [43].

The inner loop controller thus has close to perfect stability
properties, in case proportional control is applied.

In order to apply a straightforward linear design method
to determine the time skew and time sum controller filters
CRTT,skew,i(s)’ i =1,...,n, and CRTT,sum(S) of the outer
loop, inner loop transfer functions need to be available. The
inner loop controllers are however not linear. To allow such a
linear design of the outer loop, the following approximation
needs to be introduced:

A4) The saturation (22) can be replaced by L (ku(t))

when Giiner (), i = 1,..,n and Gipner  (s)

are computed. 7
An additional reason why the assumption A4 is made is that
the IQC stability analysis of Section IV cannot handle arbi-
trarily cascaded nonlinearities. Therefore the stability analysis
needs to be restricted to either a treatment of the saturations
of the reference signals given by (7) and (8), or to a treatment
of the inner loop nonlinearities of (22). The choice of the
paper is expressed by A4. It can also be noted that the general
assumption underpinning the cascade control paradigm is that
the inner loop controllers can be treated as ideal as seen from
the outer loop. The assumption A4 is thus in line with the
cascade control paradigm, in the sense that the inner loops
can be modeled with idealized models.

Using (27) together with A4 and Fig. 3 then immediately
gives
Ginner ( S)

window,i

_ kJZCl(S) (1 — G_STRTT*i)
540 + kiCy(s) (1 — e—sTrrTi)’

t=1,...,n,

windouw,r(5)

 kCi(s) (1 —emoTRTT) 0
s+ 6, +k,Cr(s) (1 — e~sTrrrr)

Here
Trrr: = TaiN,i + Tquewe,s + Taw +TuE,:

+Tul,W,i + Tul,N,i7 1= 17 ey T (31)



Trrry = Ta.nr + Tyuever + Tawe +Tuer

+Tul,W,r + Tul,N,r- (32)

E. Nonlinear MIMO Round Trip Time Skew Control Model

A prerequisite for the IQC stability analysis of section IV
is to transform the control loop of Fig. 2 into the standard
representation that is used for IQC analysis. This is done for
the case where the saturations of the inner loops are inactive.
This is in line with the cascade control paradigm of the paper,
allowing the inner loops to be idealized. It is stressed that it
is not assumed that the decoupling operates as intended, that
is a controller design assumption leading to the diagonal time
skew controller filter (37). Note the dependence on both ¢ and
s need to be used below.

The relevant IQC theorems hold for the MIMO closed loop
system

x(s) = G(s)Tfr(s) + e(s)
Thifr(t) = Ax(1)

cf. [17]. In (33) G(s) is a proper transfer function matrix with
no poles in the right half plane, while e(s) is an external vector
signal that is calculated below. The internal vector signals
x(t) and T’;%T(t) are also calculated below. Finally A is
a bounded and causal operator.

The vector signal x(s) is defined by

x(s) = (z1(s) 2(s) z,(s))" .

Similarly the internal signal T’/ (s) is defined by

T
TEIJ:T(S) = (ngeTfTJ(s) TIQ%’fT,n(S) Tzr%eTfT,r(S)) .
(35
With these definitions G(s) represents the linear matrix loop
gain of Fig. 2, while the operator A includes the effect of
the saturation in the outer loop, built up from (7) and (8).
Therefore, the bounded operator A is given by

(33)

3

(34)

satl (i?l (t)) 0 0 0
AX(t) = 0 . 0 0
0 0 saty,(&n(t)) 0

0 0 0 sat, (Z,(t))

(36)
The next step is to derive G(s). To do so, use is made of
matrices F and M given by (15) and Theorem 1. Next, the
application of decoupling and the separated design of the
time skew/sum controller filter of each channel, leads to the
following time skew controller filter matrix

Cskew (5) -
Crr7,skew,1(s) 0 0 0
0 0 0
0 0 CRTT,skew,n(s) 0
0 0 0 CRTT,sum (5)

(37)

Following the MIMO loop counter-clockwise from x(s) to

T (s), using Capen(s) and G () given by (37) and
(14), respectively, then gives

x(s) = ~MCpew () PGS () Thfor(s)

+MCpew (5)TI (5), (38)
where
T, (s) =
ref ref ref T
(TRTT,skew,l(s) TRTT,skew,n(s) TRTT,sum,r(S)) .
(39)

A comparison to (33) then gives the following linear MIMO
loop gain and the external signal vector:

G(s) = —MCuew(s)FG,(5), (40)
e(s) = MCpen(s)To (s). 1)

All quantities needed for the IQC stability analysis are now
defined.

IV. STABILITY ANALYSIS USING INTEGRAL QUADRATIC
CONSTRAINTS

Since the time skew control system contains delays it
is infinite dimensional. A stringent treatment of the delays
therefore rules out state space based Lyapunov methods for
stability analysis of data flow delay control systems. Instead,
input-output stability based methods, as pioneered in [47],
[48], can be used, as in the SISO delay control cases of [40],
[41], [42]. Loop transformations allow a treatment of some
dual-input-dual-output time skew control cases as well, c.f.
[25] and [45]. More recently, IQC analysis was used to analyse
the general MIMO nonlinear time delay system of (33) [17].
The IQC method is therefore chosen for the stability analysis
of the present paper.

The IQC stability analysis is performed in a number of
steps. First the required definitions and the basic result of
[17] are stated. Secondly, assumptions on the components of
the skew control system of Fig. 2 and Fig. 3 are introduced.
Finally, the basic result of [17] is used to formulate Theorem
2 below. Note that the MIMO model of section IILE is derived
for arbitrary leakage coefficients ; > 0, ¢« = 1,...,n,r. This

. general setting of the problem is also used in this section.

A. Tools of Analysis

The following definitions of [17], [23] are needed to set up
the framework for the IQC analysis.

Definition 1: L3 denotes the space of R"™-valued functions
f(-) : [0,00) — R™ of finite energy, i.e.

O = [ F @R < o

0

(42)

Definition 2: The space L5, is an extension of the space
L7, whose members are R™-valued functions f(-) : [0,00) —
R™, such that their time truncation

fr(t) = { f(;(t)

Definition 3: The feedback interconnection of G(s) and A
as in (33) is well-posed if it defines a causal map é(-) —
(v(-),w(-)) on L5, ie. for any e(-) € L3 there exists
a solution (v(-),w(-)) that depends causally on é&(-). The

0<t<T

t>T € Ly

(43)



interconnection is stable if, in addition, the inverse is bounded.
This means that there exists a constant Cygc > 0 such that

T T
/ (L (t)v(t) + W (H)W(t)) dt < Crge / el (t)e(t)dt
0 0 a4
In the rest of the paper the superscript m in L3} is dropped.
A bounded operator A is said to satisfy the IQC defined
by II(s), if for all v(s),w(s)
v(je)

/_O:o [ w(jw)

vijw) 1"
. II(jw
W(jw) :| (.7 ) |:
with W(t) = Av(t). The matrix II(s) is denoted the multi-
plier defining the IQC.

Next assume that the following conditions hold:

Cl)

]dw >0 (45)

G(s) is a proper rational function with real coeffi-
cients without poles in the closed right half-plane.

C2) The interconnection of G(s) and TA is well posed
for all 7 € [0, 1].

C3)  é(-) € La..

C4) A is a bounded causal operator.

C5) 7A satisfies the IQC defined by II(s).

The main result in IQC theory is then:
Lemma 2: ([23]) Assume that C1-C5 hold. If there exists
€ > 0 such that Vw € R U {co}

[ G(jw) ]H (o) [ G(jw)

7 7 (46)

:| S —el )
then, the feedback interconnection of G(s) and A of (33) is
stable.

To explain the conditions C1-C5, it is noted that C1 is a
standard assumption in IQC theory which is straightforward
to verify. A similar condition appears for the Popov and
circle criteria when subject to saturating nonlinearities [39].
The condition C2 ensures that the interconnection makes
sense. More specifically, it refers to the existence of unique
solutions to the differential equations, and to the causality of
such solutions. The condition C3 is standard in IQC theory.
The conditions C4-C5 represent two well studied classes of
bounded operators, see [17] and [23] for further details.

B. Assumptions on the Time Skew Controller

In the present paper, the numerical IQC analysis was carried
out using rational approximations of all delays. The reason is
that initial attempts to include the delays as parts of the op-
erator A produced conservative results. The applied approach
instead increased the order of the rational approximations until
the stability limits did not change significantly, thereby pro-
ducing practically useful stability limits for moderate orders
of the approximation, c.f. section V.C. Due to the suitability
of the IQC model for the treatment of the saturations, there
was then no need to switch to a Lyapunov based analysis [39]
that could also have been applied in the finite dimensional
numerical case. The following assumptions, additional to Al-
A4, are therefore needed for the IQC analysis of the round
trip time skew controller.

A5)  The transfer functions Crrr sum (5), CRPT, skew,i(5)
are proper rational transfer functions without poles
in the closed right half-plane.
yinmer  (s), i = 1,..,n,r are proper rational
transfer functions without poles in the closed right
half-plane, where the time delays of G (s)
have been replaced by a rational delay approxi-
mation of order ngeiay,; in éﬁzzzw7i(s). The ap-
proximate transfer functions fulfil éfﬁ%@w
mﬁ%@wvi(s), Ndelay,i — 00, 1 =1,...,n,T.
TZZ‘ZU)(') € ‘CQE'
The interconnection of G(s) and 7A is well posed
for every 7 € [0, 1].

Assumptions A5 and A6 are needed to ensure that G(s)
is consistent with C1. The assumption on the location of
the poles of each controller, means that such controllers are
required to be open loop stable. This bounded-input bounded-
output stability condition can be easily addressed during the
design of the controllers. Assumption A6 is introduced to
idealize the inner control loops and to ensure that G'™"er (s)
is a rational transfer function. The intention with the use of
rational delay approximations is to enable IQC stability analy-
sis in a finite dimensional case, arbitrarily close to the infinite
dimensional case when the delay approximation order tends
to infinity. In the present paper Padé delay approximations
[38] are used, exactly as in [41], [42]. A truncated inverted
series expansion of e*”" could be used as well, where T is an

arbitrary delay.

A6)

(s) —

A7)
AB)

C. Verification of Integral Quadratic Constraint Conditions

In order to apply Lemma 2 it needs to be formally proved
that the imposed conditions A3-A8 imply that C1-C5 hold.
Clearly C1 follows from (40) if Cgpew (s) and GIer () are
both proper without poles in the right half plane. This follows
from A5 and A6 so C1 holds. Assumption A5 then ensures that
Cskew 1S a bounded operator, therefore the assumptions AS
and A7 imply that the condition C3 is satisfied. The condition
A8 then implies C2. The conditions C4 and C5 are known to
be true from the analysis of [17], [23]. In addition to A5-AS,
also A3-A4 needs to hold for the IQC analysis to be valid,
a fact that is obvious from the previous treatment. Note that
Al and A2 are only used to support the derivation of the
decoupling matrix. Since perfect decoupling is not assumed
in the stability analysis, A1 and A2 are not needed in the
following result:

Theorem 2: Consider the feedback interaction of (33) and
assume that the conditions A3-A8 hold, where ngeiay,i, @ =
1,...,n,r are finite. Suppose that A of (36) satisfy the IQC
given by II(s). Then, the feedback interconnection (33), with

e wi(S). i = L, ...n,r, replaced by GIrner | (s), i =
1, ...,n,7’7, is stable if there exists € > 0 such that (46) holds
Yw € RU {oo}.

Note that the condition (46) is an infinite-dimensional,
frequency-dependent, linear matrix inequality. However, by
using the Kalman-Yakubovich-Popov (KYP) lemma, the con-
dition (46) can be converted to a finite-dimensional frequency-
independent linear matrix inequality. The details are outlined



in [23]. In addition, note that the MATLABT™ toolbox IQC-
beta [18] provides a convenient way to analyse the stability of
systems using IQC.

Finally, the infinite dimensional delay limit is addressed by

Conjecture 1: Consider the feedback interaction of (33) and
assume that the conditions A3-A8 hold, where n4eiqy,; — 00,
i =1,...,n,7. Suppose that A of (36) satisfy the IQC given
by II(s). Then, the feedback interconnection (33) is stable if
there exists € > 0 such that (46) holds Vw € R U {oc0}.

As indicated by the numerical results of section V.C, the
stability limit of the infinite dimensional case appears to be
reached for relatively low orders of the delay approximation.
An order well below 10 seems to be sufficient in the treated
example.

V. NUMERICAL RESULTS

The numerical results are based on C++ testbed code, that
is intended to form the basis for product development. Since
the 5G standards are still in development, it is not yet possible
to obtain field results.

A. Test Code Implementation

The round trip time skew controller algorithm was imple-
mented in C++, rather than in MATLAB. The advantage is that
C++ code can be used for more tasks than MATLAB code.
As for a MATLAB implementation, controller performance
evaluation can be done off-line with C++ code. The same
C++ code can then be integrated and run on product like
hardware, using Ericsson’s multi-core digital signal processing
(DSP) architecture. This allows detailed profiling at DSP cycle
level which is much more accurate than estimates obtained
by counts of arithmetic operations. This fact is particularly
important when computational complexity is evaluated for
multi-core processors.

The testbed implements the inner loop window based con-
troller used here and analysed in [43]. The lead-lag queue
dwell time inner loop controller of [40] is also implemented.
An arbitrary number of transmission nodes can be used, and it
is possible to use any mix of the two implemented inner loop
controllers. The tuning of the inner loop controllers can be
parameterized either in terms of all the controller parameters,
or in terms of a single parameter TRl that represents
the nominal round trip delay. All other controller parameters
are then derived from the nominal round trip delay. This is
very advantageous, since a single system parameter can then
be used by the operator (i.e. the user) to set the controller
parameters for nominal delays from hundreds of ms down to
a fraction of a ms. To briefly explain how this is done, note
that the tuning of a lead-lag controller starts by definition of the
crossover angular frequency w, [40]. Noting that an increased
delay typically requires a reduced angular crossover frequency,
it follows that

Co,
We = Trominal " @7
RTT
Here C,, is a scale factor corresponding to a well working
controller tuning. As it turns out, all lead-lag link parameters
then follow from w. using the procedure of [40]. The round
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trip time skew and round trip time sum controller filters are
selected to be lead-lag links, exactly as in [40]. Also these
controller filters can be parameterized in terms of all controller
parameters of the lead-lag link, or in terms of the nominal
round trip delay.

The inner loop implementation embeds a simulation of
each data transmission between the controller node and the
transmission nodes. The delays in the downlinks and uplinks
can be varied independently to simulate time variation, us-
ing buffers to implement transport delays. The inner loop
implementation also simulates the transmit data queue of
each transmission node, thereby connecting to the wireless
interfaces and data rates that empty the transmit data queues.
Any wireless simulator may be used for the generation of
the wireless data rates, however the testbed code can also
interface to external test files that provide the wireless data
rate that affects each transmit data queue. Wireless interface
delays and UE processing delays can also be introduced in
the simulation. In this way the inner loop simulation provides
the time evolution of le,N’ Tqueue’ le,Wv Tug, Tul,W and
T, ~. The inner loop simulation also keeps track of the data
item number with separate delay buffers, a fact that allows the
momentary value of y(s) of (26) to be evaluated by the inner
loop window controller of the paper. The inner loop controller
simulation is capable of producing output data files readable
by MATLAB. This allows a use of MATLAB for display of
the obtained results, as described below. Input data rates to the
controller node can be introduced with various traffic models,
however this is beyond the scope of the present paper.

B. Detailed Time Skew Controller Design

To provide an illustration of the performance of the con-
troller, a case with 3 transmission nodes is treated. The inner
loop controllers are selected to be proportional controllers
to allow application of Lemma 1. The proportional gains of
the inner loops were chosen as C; = 1000.0, : = 1,....n,
C, = 1000.0. That choice was evaluated with good results in
[43]. Furthermore, k; = 1.0, =1,...,n, k. = 1.0, §; = 0.0,
, = 1,...,n, and §, = 0.0 were chosen. In the design it is
furthermore assumed that the nominal designing round trip
delays for the inner loop controllers are g, = 10.0 ms,
i=1,...n, Ty, =10.0 ms, where d indicates ‘designing
delay’. Using this information, the bode plot of GE"<r" = (s),
Ginner 5(s) and Girner - (s) given by (29) and (30) can
be computed. The Bode plot is depicted in Fig. 4. As can be
seen the response is close to constant with a small phase loss
up to almost 100 H z, after which the gain and phase starts to
oscillate. Obviously, this is an effect of the designing delay
of 10.0 ms, reflecting the way the Nyquist plot circulates
around the origin and passes the instability point —1 + 0j.
Since the delay is not well known and may change in the
present application, any robust outer loop round trip time
skew controller design therefore needs to have a bandwidth
low enough to attenuate the frequencies where the inner loop
transfer functions vary rapidly.

Since decoupling is applied, each control channel is de-
signed separately. This assumption means that the measure-
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Fig. 4. Bode plot of the inner loop transfer functions. Note that the phase
curve never passes -180 degrees. The reason is that the imaginary part of the
frequency function is strictly negative for all w, see [43].

ment combining and decoupling blocks F and M are ne-
glected. This transforms the loop gain of (40) to the diagonal
product Cgpen(s)GImr (s). Since the three inner loops
are assumed to be identical in the design, it follows that
Crr7,skew,1(8) = CRTT skew,2(8) = CRTT,sum(s). In the
present work, the same lead-lag controller as in [40] is used,
ie

Crr7,skew,1(8) = CRTT skew,2(5) = CrTT,5um($)

s+b
s+ bN’

s+a
s+ 77

=K (48)
A complete algorithm for tuning of the controller parame-
ters appears in [40]. The procedure is as follows. First the
bandwidth and stability properties of the lead-lag controller is
specified in terms of a desired crossover frequency for the loop
gains of (28), and a desired phase margin at that crossover
frequency. Here a crossover frequency of f. = 11.0 Hz is
specified, together with a phase margin of at least 90.0 deg.
Next the time constant a and the amount of low frequency
controller gain M of the lag-link is selected. Some exper-
imentation revealed that a = 0.25 X w. = 0.25 x 27w f. was
suitable together with M = 10. Following this step the needed
amount of phase advance is to be determined. However at the
selected crossover frequency, the phase margin is well above
the specification, and hence no phase advance is needed. The
outer time skew controller filters are therefore simplified to

Crr7,skew,1(8) = CRTT skew,2(5) = CrTT,5um($)

s+a
a
S+M

=K 49)
i.e leaky integrating control. It then only remains to determine
the gain factor K. This is done by applying (29) to solve for
K using the crossover frequency condition

inner

Jwe + a .
Kc* window,i(]wc) :17

: 50
Jwe + 37 0

TABLE I
STABILITY LIMITS IN TERMS OF TRrTT AS A FUNCTION OF C; AND THE
ORDER OF THE PADE APPROXIMATION.

Order of Padé approximation
C; 37‘d 4th 5th Gth 7th 8th
10° || 911 ms | 866 ms | 866 ms | 866 ms | 866 ms | 866 ms
10t 333 ms | 300 ms | 300 ms | 299 ms 299 ms 299 ms
102 122 ms | 100 ms | 100 ms | 100 ms 100 ms 100 ms
103 40 ms 33 ms 31 ms 31 ms | 288 ms | 29.4 ms
104 2 ms 1 ms 0.7 ms 0.7 ms 0.6 ms | 0.56 ms

which results in the controller parameters a = 17.28, M =
10.0, and K = 1.064. Hence

CRrT,skew,1(8) = CRTT skew,2(5) = CRTT, sum(5)
s+ 17.3
s+ 1.73

The continuous time round trip time skew control system is
finally discretized with Tustin’s approximation [27]

21—q!

BE3ETE
where ¢~ is the delay operator and 75 = 1.0 ms is the
sampling period.

= 1.064 (51)

(52)

1

C. Stability

A numerical IQC stability analysis is performed in this
subsection. The analysis quantifies how large round trip delays
that can be tolerated before stability is compromized, assuming
the controller design above. This serves to support the simula-
tion results and to provide detailed engineering stability limits.
Note that the stability conditions obtained by IQC analysis are
not necessary, exactly as is the case when the Popov criterion
is applied in [41], [42] and [45]. This means that the round
trip time skew control system may still be stable, even if the
IQC stability conditions are not met.

The IQC stability analysis was performed using the IQC-
beta toolbox [18]. IQC stability tests were performed using
Cy = Cy = C, = {10°,10,...,10*}. The delay approx-
imations were selected to be Padé approximations of orders
three to eight [38]. Table I shows the values of Trpr for
which stability of the round trip time skew control system is
guaranteed. For this example, Padé approximations of fourth
or higher order seems to provide reasonable stability limits.
For the controller design used in the numerical simulation,
ie. C; = 1000, : = 1,...,n,r, stability of the round trip time
skew control system can therefore be guaranteed when Trpr
is lower than 29 ms.

The computational cost associated with an IQC stability
analysis is in general high [17], [18]. In the present application
this is not a problem, since the stability analysis is typically
done off-line during the setup of the time-skew controllers.

D. Test data generation model

Since there are not yet any complete 5G standard and
products, simulated data needs to be used for evaluation
of the proposed delay skew control algorithm. The third



TABLE 11
DELAY PARAMETERS AT START OF SIMULATION

[ Parameter [[ Tx Node 0 ]| Tx Node 1 || Tx Node 2 ]
F F
TIQ’?T skew,?’ TISZ"T sum 40.0 ms 0.0 ms 0.0 ms
Tar,Ni +Taw,i 2.0 ms 10.0 ms 2.0 ms
Twi N+ Tu,wi 1.0 ms 1.0 ms 1.0 ms
TuEe.: 1.0 ms 1.0 ms 1.0 ms

generation partnership project (3GPP) standardization has,
however, evolved sufficiently far that it can be concluded that
important parts resemble aspects of the 4G long term evolution
(LTE) standard [9]. The radio access methods are e.g. similar,
with orthogonal frequency division multiple access (OFDMA)
being the choice in both cases. The consequence of this is
that advanced system simulation tools of LTE may be tuned
to resemble 5G multi-connectivity aspects.

Since the multi-connectivity flow control test code discussed
in section V.A is stand alone, an interface between the re-tuned
system simulator and the test code is needed. In this paper a
single user full buffer scenario was assumed, meaning that the
commanded bitrates will always be realizable by available
physical data. In such a scenario, it is therefore the scheduled
wireless rates over the multiple air-interfaces that drive the
flow control test code. The interface is therefore provided by
scheduled wireless rate signal files, generated by a properly
re-tuned product system simulator.

To describe this data generation, the following brief de-
scription of the system simulator is given. The fading radio
channel models for the air-interfaces were independent typical
urban (TU) channel models with movement. The
wireless rates are determined by the scheduler that runs fairly
complicated algorithms that are beyond the scope of the
present paper, see e.g. [9], [13] for an introduction. The
scheduler is based on information of the channel qualities in
the downlinks, that are measured by the mobile and obtained as
feedback signals in terms of coarsely quantized channel quality
indication (CQI) messages. The channel quality is affected
by the received channel power spectral density in the mobile
which in turn is affected by the fading and the path loss
between the transmission nodes and the mobile. Other factors
affecting the channel quality is the interference from neighbor
cells and the capabilities of the mobile. The CQIs are input to
the link adaptation on which the scheduled wireless rates are
based. The link adaptation e.g. contains nonlinear tabulated
mappings to arrive at quantities useful for the scheduling.

Wireless rate realizations were then generated by the above
high fidelity system simulator. The user data was assumed
to be transmitted over all three available transmission nodes
simultaneously.

E. Performance

The reference transmission node was selected as number 0O,
with the two other transmission nodes being numbered as 1
and 2, respectively. The initial values of the delay parameters
of the networked control system appear in Table II.

This means that the distributable delay budget is
in total, since . In order to illus-
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Fig. 5. The time evolution of the downlink interface delays (top left), the
uplink interface delays (top right), the resulting queue dwell times (bottom
left), and the resulting round trip times (bottom right). Transmission nodes 0,
1 and 2 are plotted blue, red and yellow, respectively. The spike at 3000 ms
is believed to be a result of a transient in the delay generating queues of the
simulator and not an effect of the controller.

trate the performance and operation of the round trip time
skew controller, the sum of the downlink interface delays
of transmission nodes 1 and 2 were then varied as depicted
in Fig. 5. The uplink interface delays and UE delays were
constant. As can be seen from Fig. 5, the round trip time skew
controller distributes the round trip times equally between the
transmission paths, in line with the skew control reference
values. It achieves this goal by adjusting the transmission node
queue dwell times to compensate for the downlink interface
delay variations, as is also evident from Fig. 5.

To further analyse the way the algorithm operates, Fig. 6
- Fig. 8 provide detailed information about the inner loop
operation of each transmission path. It can be seen that the
queue dwell time of the reference node is kept constant, at
about one third of the total delay budget. The inner loop
controller achieves this goal by adjusting the queue data
volume of the queue of transmission node 0. Transmission
node 1 needs to use a small queue dwell time to compensate
for the high downlink interface delay for the first 2 seconds of
the simulation. It then quickly increases the queue dwell time
when the downlink interface delay is reduced after 2 seconds.
Again, this is done by adjustment of the queue data volume.
Transmission node 2 on the other hand uses a high queue
dwell time the first 3 seconds, while the queue dwell time
is decreased after 3 seconds, to compensate for the increased
downlink interface delay. It can be noted that the inner loop
window controllers are very quick in performing the needed
changes, which is believed to be a consequence of the use
of high gain proportional control. Note that bit rate as well
as queue data volume saturations occur, without any effect
on stability which remains consistent during the simulation.
The excellent practical stability properties are believed to be
explained by the strong result of Lemma 1, together with a
controller design reflecting Theorem 2.
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Fig. 7. The inner loop operation of transmission path 1, as a function of time.

As remarked in the introduction, the reference values for
the transmission queue dwell times are constrained to non-
negative values by the saturations in the loop. The need for
this is evident from Fig. 7 and Fig. 8. Both figures clearly
show that transient periods with zero queue data volume and
zero queue dwell time do occur even with constraints. Without
the constraints these periods would be of significantly longer
durations.

The performance of the algorithm can be further studied
in Fig. 9 that illustrates the time skew, the corresponding
errors as well as the time sum and the corresponding error.
It can be seen that the time skews are regulated towards

as required. The remaining variations are due to the
delays inherent in the control loops and the varying wireless
rates. There is an initial transient of about before the
round trip time skew controller has settled, after which the
decoupling seems to work very well, also when the delays
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Fig. 8. The inner loop operation of transmission path 2, as a function of time.
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Fig. 9. The downlink interface delay variations, as a function of time. The
spike at 3000 ms is believed to be a result of a transient in the delay
generating queues of the simulator and not an effect of the controller.

change. It can be noted that the length of the transient is
consistent with the crossover frequency used in the
design. Finally there is a spike at . This is believed to
be due to the controller decreasing the dwell time of the queue
of transmission node 2, at which time a significant saturation
of the inner loop control signal takes place.

The standard deviations of the time skew control errors
were and for transmission nodes 1 and 2,
respectively. The time sum was controlled towards its setpoint
of with a standard deviation of the error equal to

. The initial transient and the spike were both removed
when measuring the standard deviations.

As a final illustration of the operation of the round trip time

skew controller, the various control signals are depicted in Fig.
10.
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Fig. 10. The downlink interface delay variations, as a function of time.
The spike at 3000 ms is believed to be a result of a transient in the delay
generating queues of the simulator and not an effect of the controller.

F. Design guidelines

This paper, [10], [20] [25] and [45] treat two control
objectives. The first objective aims at controlling the one way
time skews from the controller node to the wireless interfaces.
This is suitable for handling multi-point transmissions that
terminate in the UE, like streaming video and augmented
reality applications. Inter-node synchronization is required.
As shown in [20] and [45], good disturbance decoupling
and rejection require a symmetric network design and well
designed inner loop controllers. The second control objective,
treated here and in [25], aims at controlling the round trip time
skews. This is suitable for handling URLLC feedback control
applications in factory automation and over the tactile internet.
A stability based design is recommended. An important aspect
is that inter-node synchronization is not required.

VI. CONCLUSIONS

This paper has defined and discussed a new MIMO delay
control problem that originates from the 5G wireless standards
that are in development. The problem needs to be solved
to enable high bandwidth networked feedback control over
multiple wireless interfaces, supporting the use of URLLC for
factory automation and the wireless tactile internet.

The main contribution of the paper is a new low complexity
round trip time skew MIMO control algorithm. The controller
exploits cascade control, where outer time skew controller
filters provide round trip time references to the inner loops
of each wireless transmission path, and where globally stable
window based controllers serve as inner loop controllers.
An important part of the contribution is that the round trip
time skew controller also solves the nonlinear data flow split
problem at the controller node, using mainly linear techniques.
This follows since the inner loop control signals are the
downlink network interface data rates that fully define the split.
The second contribution of the paper is a stability analysis

that exploits the integral quadratic constraint theory, to handle
non-negativity constraints inherent in the MIMO controller. A
further contribution reported on testbed experiments based on
a three node scenario. The practical results of the testbed, with
varying delays in the downlink interface chains, confirm the
results of the stability analysis and show that the round trip
time skew controller will be able to provide time skew control
to within about 3 , using a sampling period of 1 . Note
that inter-node time synchronization is not required.

There are many interesting research possibilities that may be
explored, among these the use of more advanced controllers.
One possibility is to replace the outer loop controller filters
by more advanced linear controllers, e.g. based on robust
control theory, or to apply non-linear model predictive control.
Analysis of the theoretical performance bounds of the time
skew control problem would also be interesting.
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